The NXA is a highly advanced Phase Noise analyzer that measures Residual Phase Noise on CW or Pulsed signals, an ideal fit for Defense and Space applications where Radar signals going through AESA antenna T/R modules need to be tested for challenging noise floor and ultra low spurious detection.

Its unique architecture integrates 2 phase noise analyzers and 2 low noise wideband synthesizers coupled with a proprietary 2D cross-correlation algorithm (patent pending) to reject its internal noise. This reliable combination enables absolute or residual phase noise measurements down to the thermal noise. The 26 GHz optimized Amplitude noise internal detectors also benefit from this cross-correlation improvement achieving guaranteed performance.

An intuitive user interface based on a large 14 inch touchscreen simplifies the operation, focusing the user on the measurement result itself instead of the measurement technique. Experts can always access advanced settings if needed.

With its frequency resolution of a few millihertz, the NXA can accurately detect spurs not usually detected by traditional analyzers and offer a frequency offset starting at only 0.01 Hz up to 40 MHz. If the frequency range is a challenge, the NXA can be connected to external phase detectors extending the frequency range to your needs.

Quick and easy phase noise plots can be obtained without any training so any manufacturing technician can operate the NXA. The NXA is the result of our 20 years of continuous experience in testing state of the art devices in the USA, Europe and Asia.

Thanks to its internal synthesizers, the user have the choice of simplicity or, when ultimate performance is required, the capability to use external reference sources like ultra low noise crystal oscillators, OCSAWs or SLCOs to push the instrument noise floor down to the state of the art.
NXA-50 Phase Noise Analyzer

Typical Phase Noise Floor

Low Frequency Band:

<table>
<thead>
<tr>
<th>Input Frequency</th>
<th>LO Input Level</th>
<th>Nominal Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MHz to 1.3 GHz</td>
<td>+5 to +20 dBm</td>
<td>Kphi=0.600 V/rd or +20 dBm Input Power at 100 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF Input Power</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1k</th>
<th>10k</th>
<th>100k</th>
<th>1M</th>
<th>10M</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 to +20 dBm</td>
<td>-150</td>
<td>-160</td>
<td>-170</td>
<td>-178</td>
<td>-187</td>
<td>-188</td>
<td>-193</td>
<td>-195</td>
</tr>
<tr>
<td>-100 MHz Internal Noise Floor</td>
<td>-102</td>
<td>-138</td>
<td>-166</td>
<td>-175</td>
<td>-174</td>
<td>-179</td>
<td>-189</td>
<td></td>
</tr>
</tbody>
</table>

Typ. dBc/Hz vs Offset (Hz) vs LO Input Level:

-150 dBc/Hz at 1 Hz offset.

External Source Noise Floor:

-150 dBc/Hz at 1 Hz offset.

100 MHz Internal Noise Floor:

-102 dBc/Hz at 1 Hz offset.

Improved noise floor can be obtained by increasing the number of cross-correlations.

High Frequency Band:

<table>
<thead>
<tr>
<th>Input Frequency</th>
<th>LO Input Level</th>
<th>Nominal Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 GHz to 50 GHz</td>
<td>+7 to +15 dBm</td>
<td>Kphi=0.300 V/rd or +15 dBm Input Power at 2 GHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF Input Power</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1k</th>
<th>10k</th>
<th>100k</th>
<th>1M</th>
<th>10M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to +20 dBm</td>
<td>-125</td>
<td>-135</td>
<td>-150</td>
<td>-160</td>
<td>-175</td>
<td>-183</td>
<td>-188</td>
<td>-188</td>
</tr>
<tr>
<td>4 GHz Internal Noise Floor</td>
<td>-70</td>
<td>-106</td>
<td>-134</td>
<td>-143</td>
<td>-142</td>
<td>-147</td>
<td>-147</td>
<td></td>
</tr>
<tr>
<td>12 GHz Internal Noise Floor</td>
<td>-60</td>
<td>-96</td>
<td>-124</td>
<td>-133</td>
<td>-132</td>
<td>-137</td>
<td>-147</td>
<td></td>
</tr>
<tr>
<td>24 GHz Internal Noise Floor</td>
<td>-54</td>
<td>-90</td>
<td>-118</td>
<td>-127</td>
<td>-126</td>
<td>-131</td>
<td>-141</td>
<td></td>
</tr>
<tr>
<td>48 GHz Internal Noise Floor</td>
<td>-48</td>
<td>-84</td>
<td>-112</td>
<td>-121</td>
<td>-120</td>
<td>-125</td>
<td>-135</td>
<td></td>
</tr>
</tbody>
</table>

Improved noise floor can be obtained by increasing the number of cross-correlations.

Averaging configuration used in specifications:

<table>
<thead>
<tr>
<th>Offset (Hz)</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1k</th>
<th>10k</th>
<th>100k</th>
<th>1M</th>
<th>10M</th>
</tr>
</thead>
<tbody>
<tr>
<td># of cross correlations</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>1k</td>
<td>1k</td>
<td>10k</td>
<td>10k</td>
</tr>
</tbody>
</table>

Please add +5 dB for specifications.

Signal Processing

Measurement Units:
- Noise in dBc/Hz, Spurs in dBc.

Cross-correlation:
- 1D or 2D mode, 1 to 100,000 depending on offsets.

Display functions:
- Smooth, spec-line, frequency & level markers, spurs list.

Data Computation:

Integrated power:
- in dBc, rad rms, rad², deg rms, deg², Hz rms, Hz².

Jitter:
- Secrms, Seccpp, Ulpp.

Spectrum:
- Variable FFT windows, spurious detection algorithms.

Real RBW:
- 3 MHz to 146 kHz for spurious detection and speed tuning.

General Specifications

Weight: 35 Kgs

Size: 6U, 19” rack mountable (260 x 570 x 445 mm)

Operating Voltage: 100-240 VAC/60Hz 4A max

Functional Specifications

Input Frequency: 2 MHz to 50 GHz (wider range with external detectors).
- 2 channels baseband inputs DC to 40 MHz.

Signal Type:
- CW or Pulsed for absolute or residual phase noise.

Offset analysis:
- 0.01 Hz to 40 MHz.

Accuracy:
- +/- 2 dB 1 kHz to 1 MHz offset, +/- 3 dB above.

Operating mode:
- Manual or Remote scripting control (ATE over Ethernet).

Input RF Connector:
- 2.92 mm Type.

Tuning Voltage Connectors:
- 2 BNC-F for external references DC-FM control.

External Ref. Sources:
- SMA-F Type.

Product specifications and descriptions in this document subject to change without notice.